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Abstract

The susceptible–infected–removed spreading model in a directed graph is
studied. The mean-field level rate equations are built with the degree–
degree connectivity correlation element and the (in, out)-degree distribution.
And the outbreak threshold is obtained analytically—it is determined by
the combination of connectivity probability and the degree distribution.
Furthermore, the methods of calculating the degree–degree correlations in
directed networks are presented. The numerical results of the discrete epidemic
processes in networks verify our analyses.

PACS numbers: 89.75.−k, 05.70.Ln

1. Introduction

Mathematical models of epidemic spreading are important tools in understanding the dynamics
of spreading (such as diseases, information and states). Many features such as the age and
the social structure of the population, the contact pattern among individuals and the stages of
infection are critical to epidemic evolution ([1, 2] and references therein).

Among all these critical features, the contact pattern of individuals has long been
acknowledged in determining the properties of epidemic spreading ([1, 3] and references
therein). According to the network-based perspective, many social, biological and
technological systems are described by complex networks, whose nodes represent agents
and links mimic the interaction among them.

There are several reasons why we must understand how directed networks affect the
epidemic processes on them. The incidence of asymmetry in disease transmission may be
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described properly by a directed network [8]. The transmission of computer viruses is based
on the World Wide Web, which is confirmed to be intrinsically directed [4, 5]. And metabolic
networks are also directed ([6, 7] and references therein).

Several works have presented studies of epidemics in directed networks. In [8] the
generating functions are used to study the epidemic probabilities in directed and semi-directed
networks. In this mathematical model, nodes have in edges, out edges and undirected edges.
The theoretical results show that epidemics in directed and semi-directed networks are very
different from those in undirected networks.

In [9], the percolation properties in directed networks are analyzed. It has long been
recognized that the susceptible–infected–removed model can be mapped to bond percolation
[10, 11]. So this result provides knowledge of epidemics also. Furthermore there are numerical
works concerning epidemics on directed networks in [12]. But the treatment therein is
relatively simple, they just use the in-degree distribution to substitute the common degree
distribution in undirected networks.

It has been recognized that there are two kinds of degree–degree correlations in social and
technological networks, which are called ‘assortative’ and ‘disassortative’ [13, 14]. According
to the numerical measures in [14], both undirected and directed networks show the property of
degree–degree correlations. In the case of undirected networks, the effects of this correlation
property on epidemic processes are concerned and analyzed in mathematical models [15–17].
There is no such work in the case of directed networks. In this paper, we built a detailed
analyzing model for epidemics in directed networks, which contains the effects of the degree–
degree correlations and the degree distributions. Through these equations, we give the critical
elements that determine the epidemic outbreak threshold.

In [14], some methods are introduced to measure the degree–degree correlations in
directed networks, but we think those are relatively simple and are not enough. It is complex
to define and measure these properties in directed networks; here we present our methods
to calculate different kinds of correlations based on the connectivity matrix and the degree
distribution of the directed network.

The last subject of this paper is to introduce our numerical works, including how to
connect individual nodes into a simply connected network, the discrete Monte Carlo methods
to simulate the epidemic process, and so on. The results show the difference between epidemics
in directed and undirected networks very clearly, and verify the theoretical results in the paper.

The paper is organized as follows. In section 2, we classify the nodes in networks
according to their degrees; in section 3, we build the mean-field rate equations and get
the theoretical result of the threshold; in section 4, we introduce the methods to measure
the degree–degree correlations in directed networks and section 5 contains our numerical
works.

2. Classifying the nodes in a network

The structure of a directed graph has been characterized in [4, 5, 7]. In this paper, it is
supposed that the whole graph consists of only a giant weakly connected component (GWCC)
(see figure 9 in [4]). In other words, every site in the graph is reachable from every other,
provided that the links are treated as bidirectional.

For a directed graph of N nodes, all nodes can be divided into Kin classes according to
their in-degree, the numbers being denoted as N(k,·) for k = 1, 2, . . . , Kin; equivalently they
can be divided into Kout classes according to their out-degree, the numbers being denoted
as N(·,l) for l = 1, 2, . . . , Kout; or they can be divided into Kin×Kout classes according to
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their (in, out)-degree, the numbers being denoted as N(k,l). Here we have the relationships
N(k,·) = ∑Kout

l=1 N(k,l), N(·,l) = ∑Kin
k=1 N(k,l) and N = ∑Kin

k=1 N(k,·) = ∑Kout
l=1 N(·,l).

Suppose here that the degree distribution P(k, l) is known. Here the first element
1 � k � Kin denotes in-degree and the second element 1 � l � Kout denotes out-degree. One
can calculate two marginal degree distributions:

P(k, ·) =
Kout∑
j=1

P(k, j) (2.1)

and

P(·, l) =
Kin∑
i=1

P(i, l). (2.2)

Besides the degree distribution, another critical factor that characterizes a directed graph is
the connectivity probability. Here we denote P((i, j)|(k, l)) as the detailed connectivity
probability that ‘a link that points to a node with (k, l)-degree comes from a node with (i, j)-
degree’. Based on it one can calculate all kinds of marginal connectivity probabilities such as
P((i, ·)|(k, ·)) which means the probability that ‘a link that points to nodes with k in-degree
comes from nodes with i in-degree’; or P((·, j)|(k, ·)) which means the probability that ‘a
link that points to nodes with k in-degree comes from nodes with j out-degree’.

In the standard compartment model, a population with N individuals is categorized
according to its infection states: susceptible (S), infected (I), or recovered and immune (R).
There are two basic models: susceptible–infected–susceptible (SIS) and susceptible–infected–
removed (SIR). In this paper, we take the SIR model to present the analyzing framework. The
model is based on two parameters, the transmission rate λ and the recovery rate μ which is

normalized to one. The infection process is via neighbors: S(i) + I (j)
λ−→I (i) + I (j), where

i and j are two neighbors, and by recovery with rate μ: I (i)
μ−→ R(i).

3. The model and the threshold

Denote s(k,l)(t), ρ(k,l)(t) and r(k,l)(t) as the density of susceptible, infected and removed nodes
in a class that has (k, l)-degree at time t, respectively. The normalization condition, valid at
each time t, is

s(k,l)(t) + ρ(k,l)(t) + r(k,l)(t) = 1 (3.1)

for each (k, l). Global quantities, such as the epidemic incidence, are expressed by
an average over the various (in, out)-degree classes: r∞ = limt→∞ r(t), with r(t) =∑

(k,l) P (k, l)r(k,l)(t).
Similarly, we can denote s(k,·)(t), ρ(k,·)(t) and r(k,·)(t) for a class with in-degree k and

denote s(·,l)(t), ρ(·,l)(t) and r(·,l)(t) for a class with out-degree l.
Let us start with the situation that the detailed connectivity probability P((i, j)|(k, l)) is

given: in this case we can build the basic coupled equations about these densities, for each
(k, l), 1 � k � Kin, 1 � l � Kout [17, 19]:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ds(k,l)(t)

dt
= −λks(k,l)(t)�(t)

dρ(k,l)(t)

dt
= λks(k,l)(t)�(t) − ρ(k,l)(t)

dr(k,l)(t)

dt
= ρ(k,l)(t).

(3.2)
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Here �(t) is the probability of the event: ‘a given link comes from an infected node’ and is
expressed as

�(t) =
∑
(i,j)

P ((i, j)|(k, l))ρ(i,j)(t). (3.3)

Set the initial conditions ρ(k,l)(0) = ε � 1, s(k,l)(0) = 1 − ε, and r(k,l) = 0. Integrate the first
equation of (3.2), yielding

s(k,l)(t) = s(k,l)(0) e−λkφ(k,l)(t) ≈ e−λkφ(k,l)(t) (3.4)

with the auxiliary function

φ(k,l)(t) =
∫ t

0

∑
(i,j)

P ((i, j)|(k, l))ρ(i,j) dt ′ =
∑
(i,j)

P ((i, j)|(k, l))r(i,j)(t) (3.5)

where r(i,j)(t) = μ
∫ t

0 ρ(i,j)(t
′)dt ′. The physical meaning of φ(k,l) is as follows: the probability

that a link leads to a node with (k, l)-degree comes from a removed node. Note that the initial
seeds are neglected in equality (3.4), so here the removed nodes only include those that would
be infected during the spreading process.

As t → ∞, 1−r(k,l)(∞) = s(k,l)(∞) = limt→∞ s(k,l)(t). And we have the self-consistent
equation about φ(k,l)(∞):

φ(k,l)(∞) =
∑
(i,j)

P ((i, j)|(k, l))(1 − s(i,j)(∞)) =
∑
(i,j)

P ((i, j)|(k, l))(1 − e−λiφ(i,j)(∞)).

(3.6)

Let � = (φ(1,1), φ(1,2), . . . , φ(kin,kout))
T and equation (3.6) can be written as � = F(�); it has

a solution � = 0, which means there is no spreading at all.
Now we have the spatial equation (3.6) instead of the temporal equation (3.2) to

characterize the system. It is advantageous to understand equation (3.6) from the perspective
of classical statistical mechanics. Here � may be treated as an order parameter. At the
threshold point, there is an equilibrium state which is stable and � = 0. The initial infective
seeds put into the network are just the perturbation of the system, and the system will stay
near the equilibrium state: � ≈ 0.

As λ becomes bigger than the threshold value, the equilibrium state � = 0 will lose
stability, and the system will evolve to another stable equilibrium state � > 0 eventually
under a perturbation.

The stability of the vector function F at the point � = 0 is determined by the local
derivative of F:

∂F

∂�

∣∣∣∣
�=0

= λA. (3.7)

Here A is a (Kin×Kout)×(Kin×Kout) matrix with the form:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1P((1, 1)|(1, 1)) · · · iP((i, j)|(1, 1)) · · · KinP((Kin,Kout)|(1, 1))

1P((1, 1)|(1, 2)) · · · iP((i, j)|(1, 2)) · · · KinP((Kin,Kout)|(1, 2))

...
...

...
...

...

1P((1, 1)|(k, l)) · · · iP((i, j)|(k, l)) · · · KinP((Kin,Kout)|(k, l))

...
...

...
...

...

1P((1, 1)|(Kin,Kout)) · · · iP((i, j)|(Kin,Kout)) · · · KinP((Kin,Kout)|(Kin,Kout))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.8)
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Denote 	m as the largest eigenvalue of A. According to equation (3.7), the origin will be
unstable whenever λ	m > 1, which defines an epidemic threshold

λc = 1

	m

, (3.9)

above which the solution � = 0 is unstable, and another solution takes over as the actual
steady state—the spreading of the disease.

The next subject is how the largest eigenvalue 	m is determined or is affected. First of
all, the upper and lower boundary of 	m are simple. Considering the row summations of the
matrix A, we have

Din(k, l) =
∑

i

∑
j

iP((i, j)|(k, l)) =
∑

i

iP((i, ·)|(k, l)). (3.10)

The physical meaning of Din(k, l) is clear: it is the average of in-degrees of the nearest
upstream nodes of the class with (k, l)-degree. We call node n1 the nearest upstream neighbor
of node n2 if n1 → n2.

Without loss of generality, we assume that the matrix A is non-negative and irreducible,
so there exists the relationship

min
(k,l)

Din(k, l) � 	m � max
(k,l)

Din(k, l). (3.11)

Now let us consider the case of uncorrelated networks, which means the conditional
probability P((i, j)|(k, l)) is independent of the (in, out)-degree of the upstream nodes, and it
has the form:

P((i, j)|(k, l)) = jP (i, j)

E(dout)
. (3.12)

Here E(dout) = ∑
(i,j) jP (i, j) = ∑

j jP ((·, j)) is the average of the out-degrees of the
whole network.

Under this condition, we have

	m = Din(k, l) =
∑

i

∑
j

ijP (i, j)

E(dout)
= E(dindout)

E(dout)
, ∀ (k, l). (3.13)

This result coincides with that obtained by percolation theory [9]. In [9], the correlation
between the in- and out-degrees of the nodes are presented and analyzed. If the in-
degree distribution and out-degree distribution are independent, which means P(i, j) =
P(i, ·)P (·, j), we have [9] 	m = E(din).

4. A brief discussion of the degree–degree correlation in directed networks

In realistic networks, nodes do not always select their neighbors at random; they present some
kinds of selectivity. So there are kinds of correlations at the network level. Of course, the
simplest correlation in the mathematical model is the degree–degree correlation. That is to
say, the selective element is the degrees of the nodes. In [13, 14], two kinds of correlations,
‘assortative’ and ‘disassortative’, are named for undirected networks.

In the case of directed networks, there are two kinds of edges for a single node: in edge
and out edge. So the situation becomes more complex. We consider that there are three
steps to studying this problem. The first step is the theoretical design of the measurement of
connectivity correlation in directed networks; in other words, we should know how to design
the correlation coefficient. The second step is the empirical study, i.e. we should know what

5
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kinds of correlations exist in different realistic directed networks. The third step is to learn
how different kinds of correlations affect the dynamical processes in directed networks.

Here we will discuss the first step briefly and we will give a method to define the correlation
coefficients.

Since there are two kinds of degree distributions in directed networks, in-degree and
out-degree, the situations one should consider are more complex than those in undirected
networks. For example, given a node with big out-degree and little in-degree, how can we
find its connection preference—does it prefer to connect to nodes with big out-degree and
little in-degree, or to nodes with big in-degree and little out-degree, or to nodes with big
total degree? So we consider that we should design a uniform method to calculate all these
correlation coefficients.

Based on the degree distribution P(k, l) and the detailed connectivity probability
P((i, j)|(k, l)), here we present the method to calculate the correlation coefficient of in-degree
in the network. It can serve as a template for other kinds of correlation coefficients.

According to (3.10), Din(k, l) is the average of in-degrees of the nearest upstream nodes
of the class with (k, l)-degree. Thus, we can get the average of in-degrees of the nearest
upstream nodes of the class with (k, ·)-degree:

Din(k, ·) =
∑

l

P (k, l)

P (k, ·)Din(k, l). (4.1)

Then we can define its average over the whole network 〈·〉1:

〈Din〉1 =
∑

k

kP (k, ·)
E(din)

Din(k, ·). (4.2)

Here kP (k,·)
E(din)

is a probability measure. Accordingly, the average of in-degree over the whole
network is as follows:

〈k〉1 =
∑

k

kP (k, ·)
E(din)

k. (4.3)

The covariance of the in-degree k and the average of in-degrees of the nearest upstream nodes
of the class with (k, ·)-degree Din is

Cov(Din, k) =
∑

k

kP (k, ·)
E(din)

(Din(k, ·) − 〈Din〉1)(k − 〈k〉1). (4.4)

The correlation coefficient of the in-degrees of directly connected nodes is

R(in,in) = Cov(Din, k)√
Var(Din)

√
Var(k)

. (4.5)

Here the variance Var(·) = Cov(·, ·).
Thus, we define a method to measure the correlation of (in-degree)–(in-degree) in directed

networks. Note that here only the degree distribution P(k, l) and the connectivity probability
P((i, j)|(k, l)) are used; we can say that just these two variables determine the connection
structure and the epidemic processes in directed networks.

The measurements of other kinds of correlations can be designed in this way.

5. Numerical works

In order to characterize the epidemic processes in directed networks more clearly, we design
a series of numerical works and construct three types of networks. The first directed network
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has a power-law in-degree distribution and an approximately normal out-degree distribution,
the two marginal distributions are independent; the second directed network is obtained by
inverting the direction of the edges in the first network. The purpose is to show the role of
two marginal distributions. The third network is an undirected network which is constructed
using the in-degree distribution of the first network as its own distribution; the purpose is to
compare the effects of directed edges and undirected ones. The steps are as follows:

(A) Generate a simple connected directed network with the desired degree distribution. This
includes the following steps:

(a) set the in-degree marginal distribution P(k, ·) ∝ k−γ as a template, assign randomly
each node a set of ‘inward half-edges’;

(b) calculate the total number of inward half-edges, then assign the same number of
outward half-edges to all nodes; each half-edge is assigned to a node chosen at
random, so the marginal out-degree approximates to the normal distribution and is
independent of in-degree;

(c) select a node randomly, denoted as NodeA; search all the nodes that can be its potential
neighbors, these nodes must satisfy two conditions: they have outward half-edges
that are not connected and they are not the nearest neighbors of NodeA. According
to the number of inward half-edges of NodeA, we select randomly the same number
of nodes and connect one of their outward half-edges with an inward half-edge of
NodeA. Thus we have a connected group; as it grows, it becomes the target network
eventually;

(d) select a node randomly from the group that has inward half-edges that do not connect,
repeat the steps as mentioned in (c). As each node in the connected group has used
up its inward half-edges, we get a simple connected network that has no self-loops
and parallel edges.

Here we set the number of nodes N = 5000, the maximum of in-degree is Kin = 50, and
the template power-law distribution has exponent γ = 2.1. After the network has been
connected, we measure that the realistic exponent is γ = 2.0346, the first- and second-
order averages of the in-degree are E(din) = 2.5454 and E

(
d2

in

) = 26.1430. The first-
and second-order averages of the out-degree are E(dout) = 2.5454 and E

(
d2

out

) = 9.0046.
In another aspect, E(dindout) = 6.4164. Figure 1 shows the two marginal distributions.

(B) Using the network constructed in step (A), we simulate the epidemic processes. At the
beginning, one node is selected randomly to be infective. At every discrete time period, an
infective node transmits disease to its downstream susceptible neighbors through directed
edges. The transmission is parallel among infective nodes, and edges are independent of
each other. At the end of the time period, infective nodes become removed. The epidemic
process ends as there is no infective node in the whole network.

As the parameter λ increases from 0 to 1, we get a prevalence of removed nodes
among the whole population. Figure 3 shows the dependence of prevalence on λ, where
the data are averaged over 103 independent runs.

(C) Using the network obtained in step (A), we invert the direction of each edge. Thus we
get a new network which has approximately normal in-degree distribution and power-law
out-degree distribution. And we perform a simulation in this network just as in step (B).

(D) We use the in-degree sequence in step (A) as the degree distribution of the undirected
network and construct a simple connected network. The essential idea of the algorithm
is similar to that mentioned above, the detailed description of it can be found in [22].
The shortcoming of this method is that one can hardly connect all nodes to the network.
The sample that we use here has N = 4028 nodes; the first and second averages of the
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Figure 1. The two marginal degree distributions of the directed network.

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

k

P
(k

)

Figure 2. The degree distribution of the realistic undirected network, the two coordinates are
logarithmic.

degree distribution are 〈k〉 = 2.8972 and 〈k2〉 = 32.1445, and the power-law exponent
γ = 2.0013. Figure 2 shows the degree distribution.

Then we simulate the epidemic process in the undirected network. The results are shown
in figure 3.

Three curves in figure 3 show the threshold phenomenon very clearly. We can estimate
roughly that the epidemic threshold in the undirected network is about 0.1; according to the
theoretical result, the threshold is λc = 〈k〉

〈k2〉 [17, 19], which takes value 〈k〉
〈k2〉 = 2.8972

32.1445 = 0.09
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Figure 3. Prevalence measured as the fraction of removed nodes as a function of the transmission
rate λ, for an undirected network (◦) and two directed networks.

here. In this paper, we get the threshold in the directed network λc = 1
E(din)

= 1
2.5454 = 0.39,

and the estimated value from figure 3 is about 0.4.
The two curves produced from two directed networks are almost coincident, but this is

not fortuitous. Note that the only difference between these two networks is that their edge
direction is inverse. According to the self-duality of the contact process [23], suppose A and
B are two sub-networks, then the probability that the contact process that starts from A will
reach B in the first network is the same as the probability that the contact process that starts
from B will reach A in the second network.

6. Conclusion

In summary, we build the mean-field rate equation models for SIR epidemics in directed
networks and find out the form of the connectivity matrix that decides the properties of
epidemic spreading. We find the boundaries of the epidemic threshold using the average of
in-degrees of the nearest upstream nodes.

Under the special condition that the connectivity of the network is uncorrelated, the
epidemic threshold is determined only by the degree distribution P(k, l): 	m = E(dindout)

E(dout)
; with

a further condition that the in-degree and out-degree distributions are independent, we have
	m = E(din).

It is easy to check that the methods used in this paper combined with the framework in
[19–21] can be used to solve the SIS epidemic model in directed networks, and the results are
similar.
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[16] Boguñá M, Pastor-Satorras R and Vespignani A 2003 Phys. Rev. Lett. 90 028701
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